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THE SECOND PLAYER'S STRATEGY IN A LINEAR DIFFERENTIAL GAME* 

M.A. ZARKH and V.S. PATSKO 

A linear antagonistic two-person differential game with fixed instant of 

termination and convex pay-off function is considered. A numerical method 
is described for constructing the second (maximizing) player's strategy, 

which guarantees a close-to-optimal result. A computer-checked example 
is given. The paper is related to /l-8/. 

Among antagonistic two-person differential games with geometric constraints on the control 

parameters /l/, the simplest from the point of view of numerical solution are games with linear 

dynamics, a fixed instant of termination, and convex terminal pay-off function /3-8/. In many 
problems the pay-off function depends on some, say R, but not all, the coordinates of the 

phase vector. This feature can be used to reduce the dimensionality of the problem by passing 

to an equivalent n-th order game /l/. 

For the case n=2,3, algorithms have now been developed and computerized for constructing 

the sets of levels w" (., c) = {(t, Y): r” (f, I/) <C) of the pay-off function 1" of the equivalent game 

/9/. Set w(.,c) is otherwise defined as the first (minimizing) player's maximum stable 

bridge in the equivalent game, which breaks off at the instant of termination 6 in the level 

set y<c of pay-off function y /l/. Its section lyo(t,c) at instant t is the same as the 

alternated integral /2/, constructed in the interval It,81 of the set y < (‘. Introducing the 

mesh {cjl and constructing the set (w(.,cj)), we can find by computer the optimal (or near- 

optimal) strategies in the initial problem. 

Sincei given any c andt, sections w(t,c) are convex, as the basis for constructing the 

first player's stable optimal strategy we can take the strategy of extremal aiming /l/. The 

calculations are simplified if the first player's control parameter is scalar: the optimal 

strategy is in this case given with the aid of a switching surface /8/. The non-convexity of 

the complement R"\ W"(t,c) prevents similar methods being used to find the second player's 

stable optimal strategy. The attempt to use another well-known metod of general type, namely, 

control with leading guide, also encounters difficulties, in that the problem of forming a 

stable guidance motion arises. 

Our present aim is to give a numerical method for constructing a stable quasi-optimal 

second player's strategy for linear differential games with fixed instant of termination. The 

method is based on a preliminary determination of sections v((t,c) and is primarily aimed 

at problems with n= 2.3 and a set Q, bounding the second player's control parameter, con- 

sisting of a polyhedron with a small number of vertices. For such problems, the method is 

realized as a standard computer program. 

1. Formulation of the problem. We take the linear antagonistic two-person differen- 

tial game 

z' = A (t) z + B (t) u t_ C (t) u (1.1) 
z E Rm, u E P, u E Q, t E T = [to, 61 

with fixed instant 6 of termination. The matrix A (t)is continuous, andthematrices B (t), c (t) 

satisfy a Lipschitz condition with respect to t. The sets P and Q are respectively a convex 
compacturn and convex polyhedron in finite-dimensional spaces. The polyhedron Qmaybedegenerate. 

We assume that the convex pay-off function y depends only on some n(l< n<(m) coordinates 

of the phase vector. Let these be the first n coordinates. We additionally assume that, 

given any c, the set of levels M (c) = ((21, . . ., 2,)’ : y (~1, . . ., z,,)< C} of the function y is 

bounded. The first player has a parameter u at his disposal and minimizes ~(21(6),...,Z,(@f)). 

The second player has a parameter u at his disposal and has the opposite aims. 

Let E be a compacturn in T X R1. We wish to construct a stable second player's strategy 

which guarantees him, for all initial positions (t,,z,) of E, a result close to the value of 

the game. 

2. Polyhedron W (t,, c). Let Z,(it, t) be the matrix of the first n rowsofthe fundamental 

Cauchy matrix for system z' = A (t)z. Using the replacement y(t)= Z,(O, t)z(t), we transform 
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from (1.1) to the equivalent game 

y’ = B1 (t)u + C' (t) v 

B’ (8) = 2, (S, t) B (t), C’ (t) = z, (6, t) C (t) 

YER”,uGP,~EQ,~ET 

(2.1) 

of n-th order with the previous pay-off function y. We divide the intexval T with a step x 
by points to = to, t,, t,, . . . . We put B2 (t) = R’ (ti), C2 (t) = C’ (tj), t F [tj, ti+,), i = 0, 1, 2,. . . 

Letpa be the convex polyhedron approximating oompactum P, and ya the convex function with 
polyhedral level sets j@(c), close to function y, We replace system (2.1) by the game 

y' = B2 (t)u + Cz (t)v, y E R”, u E Pa, v E Q, t E T (2.2) 

with piecewise constant dynamics. For all ti, the sections w (ti, c) of the level set of the 
value function in game (2.2) are convex polyhedra. Cases when the polyhedra degenerate are 
possible. This leads to instability of the numerical procedure for constructing them. we 
shall assume below that polyhedra w(ti, C) are non-degenerate. These polyhedra approximate 
the sections w" (ti,C) of the level set of the value function in game (2.1) /4, 7,'. 

Let us describe the construction of polyhedron w(ti,c). Let p be the symbol of the 
support function, N(X)the set of all unit outward normals to n - 1 -dimensional faces of 
the polyhedron X c R*. We put W (8, c) = M2 (c). Assume that polyhedra W(fi, c),..., W(tiql, 

c), W (b+,, c) have been found. We take L (ti, C) = A (W (tic17 c) - xB2 (tJ Pa) and 

9 (It tj, c, = P (I, W (ti*l, C)) + Xp (I, - B" (ti) P”) - 0.3) 
v (I, Ca (ti) Q), 1 E L (tis C) 

Then, /lo/, 

w @iv c) = 1Y E R" : Z’Y < q (I, ti, c), 1 E L (ti, c)j (2.4) 
we have L (tit C) 3 N (W (ti, c)). In many problems the set L (tilt) increases rapidly as i 

decreases. Hence, for computer evaluations, we need to limit the number of vectors included 
in L(ti, c), by'"pasting together" close vectors. Accordingly, instead of W(ti, c) we obtain 
an upper bound w(t,,cf. To cover this case, we introduce for ti +6 an arbitrary set 
L (tt,c} of unit vectors, which satisfy the condition L (ti,c) 3 N (W (ticl,e)). We put W (8, c) = 
MB (c). For tl P6, we find 9(1,ti,~f and polyhedron W (titc) from expressions similar to 
(2.3), (2.4), with L (ti, C) replaced by L (tiy C) and W (ti+lt C) by W (ti+l, c). Since N (W (tip 

c)) c L @iv 4, the set L (ti,C) in particular can be taken as constant, independent of ti. we 
require only that it contain all the normals of polyhedron ll'f"(c). 

We fix the interval [cc, c*l. we stipulate that co is a lower bound of the pay-off function 
in the set of initial positions in game (l.l), and c* is not less than the analogous upper 
bound. In the interval [c",c*l we assign a mesh {Cj} of values cr<q< . . . of the parameter 
c. For each c E @JR let a sequence of polyhedra W(Q,C) be computer-constructed. Let 
r0 and r* denote positive numbers such that, in any of polyhedra W (ti,c) we can inscribe a 
sphere of radius? and circumscribe any by a sphere of radius r*. The centres of these 
spheres may depend on c and ti. 

The support function of polyhedron W (tl,c) is piecewise linear. In fact, to any view 
W there corresponds a convex cone I generated by the unit outward normals to n - 1 -dimen- 
sional faces, containing w. In the cone with function p(., W (tile)) is linear, while the unit 
normals to the faces are the cone generators. When n = 2 there are two generators, and with 
n> 3 there are not less than R. We stipulate that, with n> 3, every cone of linearity 
of the function p(., W (&,c)) may be divided without the addition of new generators into R- 
faced cones. When using the expression "cone of linearity of the function p (. , 1%' (ti, C))" 
we understand that the number of its generators is n. We assume the existence of a constant 

B>% common for all CE (Cj> and ti, such that, for any cone of linearity K = cone {l,, . f ., z?J, 
of the function p( .,W (&,c)) we have 

I* - 2, I ID,, VI D I.< fi, S, k, e = i, 2,. . . . n (2.5) 

Eere, D is the determinant of the matrix composed of the coordinates of vectors llr . . ..l. 
of the cone generators, D,, is the cofactor of the (s,e )-thelement. When n = 2 the 
condition is satisfied automatically: the constant @ can be taken equal to 2r*lr". With 
n=3, the condition limits the "elongation" of the cones of linearity of the function 
p(.,w(~~,c))~*(*~.A. Zarkh and V.S. Patsko, The second player's positional control in a linear 
differential game with fixed instant of termination, Dep. VINITI, 5756,-85, 1 August, 1985). 

3. Processing of the polyhedra W (tt,c). Let Q (I, ti) be the set of all vertices 
of polyhedron Q, on which the maximum of the scalar product l’CZ(ti)q,q= Q, is reached. We 
denote by n(t, ,c) the union of all cones of linearity K G cone {Zr. . . . . 1,) of function 
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p (., w(ti,c)), for each of which n,Q (&,tj)= @,s = 1,n. The cones 
appearing in R(ti,C) will be called "poor". In Fig.1, for 

$3' 

n=2, we show the polyhedra w (tl,c), cz(ti)Q (denoted Wand 

+ 

C'Q). The poor cones of linearity of p (., W (ti, c)) are those 
into whose interior the normals of polyhedron C'(ti)Q are 

2 incident. 

W 
'* 

Of the information about polyhedra W (tl,c) we retain, for 

all CE {Cj} and tj for the formation of the second player's 
strategy, only the information about the poor cones and the 

values of support function p(., W*(tiy C)) on their generators. 

The control algorithm that uses this information will be called 

an algorithm with correction. 

Fig.1 
We stipulate that the initial instant t, for game (1.1) is 

the same as one of the instants ti. We assume that the step A 
of the second player's control scheme /l/ is constant and a multiple of x. Let zo = t*,7fi - 
T,;_~ + A, k = 1, 2, . . . . When describing the algorithm with correction we shall assume that, 
instead of the exact phase vector Z(Tp), the reading E(zh-) is transmitted in the second 

player's control scheme. Before the algorithm startstooperate, we must specify the par- 

ameter p,O< p< i, the meaning of which will be clear from what follows. 

Given any unit vector 1 E Rn, any C E {Cj}, y E R”, and ti, we put d (ti, 1, y, c) = p (I, \1' (tj, 
c)) - Z'y. The quantity d is the distance of point y to the corresponding vector 1 of the 

support hyperplane to polyhedron \v (&, c). Note that d has a plus sign if y belongs to the 

same half-space as W (t,,~), and a minus sign if y and W (ti,c) are separated by this hyper- 

plane. 

4. Basic algorithm. The algorithm with correction is based on the so-called basic 

algorithm, which uses information taken from polyhedra W (ti,c) with fixed c, and will now 

be described. 

We fix C E {Cj}. Assume that p,O< ~(1, has been chosen. At each instant th- the 

second player's control is found from the extremum condition on some vector. At the instant 

t, = 70 we have to specify the initial unit vector I, = l($). 

In short, at the instant t, we have the reading E(t*) and the vector I,. To the instant 

rh-, k>O, there corresponds the reading E(Zh-) and the unit vector L(z~), transmitted from 

the previous step of the discrete scheme. If l(78) 3 A (7h.t C), we put 1 (T~+~) = 1 (TV). Let 1 (z;) E 
A (TX, c),i.e., a poor cone K = cone {II, . . ..l.}, containing the vector l(rh.),is discovered. If the 

inequalities 1' (zh-)18 < 1 - u,s = 1,2,...,n hold simultaneously, we choose as 1 (zk+*) the 

generator l,, . . . . &,oftheconeK, inwhichtheminimumofdistances d (rh-, I,, z,, @, rh-) E (rii), C), s = 19 2, 

. . ..n. is reached. If l'(zt)ls> 1 - p, forat anyrateones = 1, 2 . . ., n, we take 1 (zK+r) = 1 (TV). AS 
the second player's control signal in the'interval [th-,~/i+l) we take any vector of Q (I (T;+I),T~). 

The essence of the algorithm is briefly as follows. The second player's control, chosen 

in the interval [T!~,z~+~), tries to repel system (2.1) at instanttr, from polyhedron W (tk. C) 

along the vector 1 b-kc*)- If the vector 1 (r:;+l) hits at the instant 'c~+I a poor cone, at a 

reasonable distance (defined by p) from its generators, the direction of further repulsion 

is changed. Otherwise it remains as before, The information on the state reading of system 

(1.1) is used only at instants when the direction of repulsion changes. 

Let 'p be an estimate of the accuracy of readings E(rt): 1 Z(TC) - E(T~) 1 <<cp for any k. We 

put II Z, (6, .)I1 = mar 1-G (6, t)s I. The maximum is taken over all unit vectors r and all tE 2'. 

We take a=11 Z,,S, .)I/ cp. Let g denote the upper bound of the modulus of the right-hand side 

of system (2.2) in T. 

We assume that xg< r"/2. In the interval [t*61, let the second player's control be 

obtained according to the basic algorithm. Then, for any realization of the first player's 

control, we have the estimate 

d (+V 1 (fl), &I (696) Z(a), C) d (4.1) 
max @a/~, d (t*, I,, Z, (e, t*) E (t*), C)) + 2% + 

cl (@ - &J A + 02 (6 - &)1/G + a (t*, 8) 

Here, ulr u, are positive constants, dependent only on the form of system (2.1) and on 

the constants r",r*, fi. The quantity s(t*,fi) is given by the relation 

.(1*,8)=~~~~~~p(l,--R'(r)F)-_p(l~--Ul(r)~z)+ 

p (1, (C' (r) - C' (T)) QN dr 

and characterizes the difference in the dynamics of systems (2.1) and (2.2). 
Let F denote the right-hand side of (4.1). Let JC R” be a compactum, upper-bounding 

the possible positions of the vector (zr(@), . . . . z,,(e)) (when the initial positions are taken 

in E),)ly - yzIL is the norm of the difference between the functions y and y2 in J, j is the 
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Lipschitz constant of the function y2 in W(C*). SincetheEuclidean distance from the point 

G(6,6) z (6) = (21 (a),. . . 9 Gl WN’ to the set {y E R" : y”(y)> c) does not exceed d(@, l(6), &,(fi, 
6)z(6), c), we have from (4.1): 

y h@), . . ., z, (6)) 2 c - 5F - II Y - y2 lb (4.2) 

Inequality (4.2) describes the second player's guarantee with control by the basic 

algorithm. The right-hand side of the inequality is close to c - cU,(6 -&)1/F, if the games 

(2.1), (2.2) are reasonably similar, the step A is small, and the initial distance d (t*, l,, 
&,(6, t*)%(t*),c) and 'p are small. If, moreover, p is small, and c differs little from the game 

value in position (t*,% (&)), then the second player's guarantee is close to optimal. 

The strategy defined by the basic algorithm is stable with respect to inaccuracies of the 

state reading z(tk). We also have stability with respect to small errors in constructing 

polyhedra W (ti, c). This can be proved on the basis of the claims used in the proof of in- 

equality (4.1). 

Notes. lo. Lets, be an instant when l(te) changes into a new and different vector Z(t,+l). 

Knowing Z(Z,,~), we can read at instant Z, the first instant tt,,h>e, when the vector 1 (rh) = I (T~+~) 

hits a poor cone and is replaced by a new one. Hence, at the instant 7, we can form a second 

player's peicewise constant programmed control in system (1.1) throughout the interval [r,,Th). 

This programmed control satisfies at instants Tk, e<k.<h, Pontryagin's maximum condition on 

the function 9 (t) = G'( 6, t) l (z~+~ ). At the instant zh, using reading 5 (th), we choose a new 

vector 2 (thil), find the interval (rk, G), ~7 h, in which the vector does not change, and form 

the programmed control in [rk,z,). At instants Q,h<k<s, it satisfies the maximum condition 

on the function q(t) = G'(*, t) 1 (thfl), etc. Thus, the second player's control defined by the basic 

algorithm can be realized as a piecewise programmed control. 

2O. It may happen that, for all instants 711 the set A(tk.C) formed from poor cones is 

empty. This is the case e.g., when it is assumed, when constructing polyhedra W (ti, c) , that 

L (ti, C) = N (W (ti+l, c) - xB* (ti) P) (consequently, W (ti, C) = W(ti, 4) and we have the one-type property 

/l/: I?*= C’, Pa= -kQ, h>l. In this case l(t’k) = b for any k, so that the second player's 

control, defined by the basic algorithm, can be specified at the initial instant t., throughout 
the interval [&,*I by a single program, which satisfies at instants 'rk the maximum condition 

on the function Q(t) = &a'@, t) 1,. 

5. Algorithm with correction. The general scheme of the algorithm is as follows. 

We fix the parameter p. At the instant t,, using the reading %(t*), we in some way choose the 

initial value c* E {c,} and the initial vector 1,. We form the second player's control in 

accordance with the basic algorithm with C = Cj(o) = C, with step A in the interval bk(U)t Tk(l)), 

where 'rk(n) = to = t,, andzkcl,- t, -f-k (l)A the instant of first correction. The correction at 

instant zk(ly amounts to readjustment of the basic algorithm to the new value Cj(l)>cj(o), cj(l) E 

{Cl1 of the parameter c. The control according to the basic algorithm is now realized with 

C = cjU) in [Tk(l)? Tk(2)h where zk(z) = zk(l) f (k (2) - k (1)) A is the instant of second correction, 

etc. The choice of c*,&, and of the instants of correction @W',) I and the correction itself 

at the instant rk@), connected with transition to the value Cj(p) > Cj(p-l), Cj(p) E {Cj)t may be 
found by different methods. Let us describe one version. 

Let 52 (tt, c) be the set of all generators of poor cones of A (tt,c). We put H (ti, C) = 
{y=P: l’x < p (I, W (ti, c)), 1 E B (ti, c)}. We have H (ti, c) 3 w (ti, c), N (H (ti, c)) = R (ti, c). Data 

about the inequalities that define polyhedra H(ti,c) are contained in the information prepared 

for the algorithm with correction. As C, we take the maximum of the values cE {c,), for 

which 2, (6, t,) 5 (t,)@intH (&,c). If there are no values with this property, we put c* = Cl. 
we define 1, as the vector from the set N(H (&,c*)), which minimizes d (t+, l,Z, (6, t*) E (t*),c,). 

We specify the instant of correction 'rk@),P> 1, as the first instant zk> Tk(pl), when the 

vector l(~k), transmitted from the previous step of the discrete scheme, hits one of the poor 

cones K = COIN3 (21, . . .,I E,} C A ('Ck, Cj(p-I)), where l'(2k) l,< 1 - p for all S = 1, 2, . . . . n. At 

the instant ~~~~~ we have the reading % (?k(p))r the vector 2 @k(p)), and the value Cj(p-1). As 

W) we take the maximum of the values CE (Cl}, C>Cj(p_1)9 for which 2, (6, zk(p>) % @k(p)) @ int H 

(rk(Ht c)- If there is no value with this property, we put Cj(p)= Cj(p-1). When realizing the 

first version of choosing C,(p), we define l(Tk(p)+l) at the next step of the discrete scheme as 

the vector of the set N (H (Tk(p), Cj(p))v which minimizes d (zk@), 1, 2, (6, Tk(p))% ('rk(p)), Cj(p)). In 
the second case we specify l(zk(p)+~) as the usual next vector of the basic algorithm with 

C = Cj(p_1) = Cj(p)* Having chosen this vector, we perform all the operations provided by the 

basic algorithm with c = Cjw) until the next instant of correction. 

Transition to new values of c during the game is introduced into the algorithm with 

correction in order to allow for "non-optimality" of the first player's behaviour. When his 

behaviour is optimal, the result largely depends on the choice of c,and 2,. The second 

player's guarantee is best if c* is close to the game value in the position (t*, %(t.)), and 1, 
is close to the vector that minimizes the distance 

. 

d (i,,i,G V',t,) % WC+) = I'&, (e,t,) % (&)-P (&W(&, C.)) 
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in the set of unit vectors 1E R". With this method of choosing C* and 1, on the basis of 
information about polyhedra H (t,,C),C= {cj}, this is not necessarily the case. Hence it is 
best to store for instants t, (specially when the initial instant in the problem is always 
the same), complete information about the polyhedra \I' (t*, C)Y C E {Cj} t and to use it to 
specify C*, *, 1 by changing H (f*, C) into \V (t*, c). In the case of a sufficently coarse mesh 
{Cj) I the second player's guarantee will then be close to optimal and the corresponding 
strategy may be called quasi-optimal. The strategy is stable. 

Results of computing specific examples show that, for many problems, there is no sense 
in taking a large number of values c in mesh {cj). Satisfactory results are obtained even 
when only one - three values of c are chosen. 

6. Examples. We shall use the above method of constructing the second player's control 

to form the worst wind disturbances according to the feedback principle in the problem of 
aircraft control in the vertical plane on landing. The statement of the problem is due to 
V.M. Kein and A.I. Krasov. 

The differential equations of motion of the aircraft centre of mass in the vertical plane 

in the neighbourhood of the nominal trajectory, linearized on the assumption of constant path 
velocity and thrust force, are 

Z1. =- IL, za = --0,695z, + 0,912, f- 0,262a + O,695z, (6.1) 
23' = ZI, 4' = 0,6162, - 0,806s, - 0,6i6z, - 0.4192, - 0,61627 
26' ~- -42, +'4U. 26' = -0,5s$ + 0,50,, 2,' = -0,521 + 0,5c* 
/ u 1 $20, 1 Cl 1 Q 10, 1 u2 1 < 5, t E T = [O, 151 

The coordinates zl,z3 are the altitude and pitching angle deviations, zL and zp are the 
rates of deviation, and zj is the elevator deviation angle. The height deviation is measured 
in metres, the angles in degrees, and the time in seconds. The variation of the coordinate 

25 is given by the fifth equation, and parameter u is the control wheel displacement (cm). 

The last two equations are the wind "generator" and the coordinates %,z; are the horizontal 

and vertical components of the wind speed (m/sac). The parameter u is at the disposal of 

the first player, and the parameter c=(~,,tiJ at the disposal ofthe second. Let M be the 
hexagon in the zl,aB plane with vertices (-3,0), (-3,i), (O,i), (3,0), (3, -I), and (0, -1). We put y(zI, zr) = 
min (c > 0: (Z,, z*)' E CM). The first player minimizes the pay-off ~(z~(I)),z,@)) at the instant of 

termination 6= 15 set, and the second maximizes it. We can best treat it as the timeofhitting 

the end of the runway. 
Game problems concerned with aircraft control in the vertical plane on landing, have been 

considered in jll, 12/. As distinct from these papers, the pay-off function here depends on 

twocoordinates,and not one, of the phase vector. 

In game (6.1), set P is an interval and Q is a rectangle. We take P2= P,y2- y. Let 
x = 0.05. 

When checking sections W(t,, c), we assumed that L (ti, c) = L (ti, c). Hence W (t,, c) = w (t,, c). 

Sections W (t,, c) are symmetric about zero. In Fig.2 we show the upper parts of the sections, 

obtained by computer with c= i for instants ti = 12, 13, 14, 15. Since Y2 = Y. then M'(c) = IM. Hence 

W (15, 1) = M’ (I) = M. In Fig.3 the broken line gives the polyhedron H (&,c) for c=~l,t,=13. 

For comparison, the continuous line gives section W(ti,c). We also show the cones appearing 
in A (ti, c). 

Let us quote the results of numerical modelling of the motions of system (6.1) for the 

initial position t, = 0, P. = (5, 0, O,O, 0, 0, 0). The game value inthisposition is 0.8. 
Letv be the second player's strategy corresponding to the algorithm with correction. 

For specifying the strategy we used information taken from the polyhedra W(ti,cl with c=O.81. 

0.9, and 1. We took the parameter u equal to 0.01, and the step A of the discrete scheme 

equal to 0.5. The initial value e, is 0.81, and the initial vector 1, was found with the 

aid of the set W(O,c,). When realizing strategy v" each coordinate of the state vector 2 (Tk) 
of system (6.1) was rounded before choosing the control action to the first plate after the 

decimal point. In this way we simulated possible errors in the scheme for forming the wind 

disturbances. 
The first player's optimal strategy u"is specified numericallybymeans of a switching 

surface /8/, constructed by processing the polyhedra W (tt, c) with .c = 0.81, 0.9, 1, 2, 4, 6. We 

introduce three ways of realizing lP. Method A is a realization with step A,=9.05; to form 

the control we use exact information on the position z(t.+kA,,),k=,O,1,2,.... With method B the 

step AU is 0.5; at each instant t,+kA, the control is formed on the basis of the information 

about the first five coordinates of the vector z(1,fkAJ; the sixth and seventh coordinates 

are assumed to be unmeasurable, and instead of them we put zeros in the scheme for choosing 

the control. Method C differs from method 6 in that a delay of 0.2 is introduced into the 

control development. Method A is the most accurate, and C is the crudest. 

In Fig.4 we show curves of the variation of z,(t) when the second player uses strategy V" 

and the first, strategy u". The letter next to the curve indicates the method of the first 

player's control. The pay-off's y at the instant of termination for methods A,B,C are 0.68, 
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2.04, and 5.55. The realization, corresponding to method A, of the wind speed horizontal and 

vertical components ~(t),z,(t) are shown in Fig.5 
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